
Zeus

Algorithmic Program Equivalence

Vijay Ramamurthy
Advisor: Umut A. Acar

Senior Honors Thesis

School of Computer Science

Carnegie Mellon University

2019

Abstract

Course staffs often grade student code by hand to gauge fine-grained properties that are hard
to autograde such as runtime, what approach the student took, and how conceptually similar
the student’s approach was to a correct one. The primary drawback of hand-grading is the
amount of the course staff’s time it takes, especially when code is conceptually complicated
and when the course size is large; in turn, the size of the course staff limits the conceptual
complexity of coding assignments and the number of students who can be allowed to enroll
in the course. In practice, for any paricular approach a student takes when writing a piece
of code, there tend to be many other students who take the same approach. Zeus checks
programs for equivalence and uses that to automatically partition student code into “equi-
valence class” buckets, where every student who took a particular approach is placed in a
bucket with all other students who took the same approach. A course staff would then only
need to hand-grade one submission per bucket, which saves time if the equivalence checker
is good enough for the number of buckets to be lower than the number of students.

Contents

1 Introduction 2

2 Related Work 6

3 LambdaPix 7
3.1 Syntax . 8
3.2 Static Semantics . 8
3.3 Dynamic Semantics . 9

4 The Algorithm 12
4.1 Propositional Logic Formulas . 12
4.2 Formula Generation . 13

5 Operation 16

6 Soundness 22
6.1 Extensional Equivalence . 22
6.2 Proof . 23

7 Implementation 30
7.1 Results . 30

1

Chapter 1

Introduction

As enrollment in computer science courses rises, the question of how to grade programming
assignments becomes more pressing. When grading programming assignments, two forces
have always been at odds: the desire to provide detailed feedback specific to each student’s
code, and the desire to grade quickly.

At one end of the spectrum is hand-grading. When a (human) grader takes the time
to read through and understand a student’s code, they can reason about how similar the
approach taken by the student is to that of the reference implementation. Further, if there
are many reference implementations then after reasoning a bit the grader can figure out
which reference implementation the student’s code is most similar to, and whether it exactly
matches any of them. When grading many pieces of code a particularly adept grader may
even identify common mistakes by recognizing when a student’s incorrect implementation
takes the same approach as a previously seen incorrect implementation. With infinite mental
resources a grader could in theory remember which students took which common correct/in-
correct approach (if any) and give feedback specific to that approach. Since reasoning about
code by hand allows a grader to draw such fine-grained conclusions about the structure of
the code, hand-grading can be used to grade students to arbitrarily fine-grained criteria such
as asymptotic complexity, stylistic structuring of code, etc.

Of course, while hand-grading provides really good detailed feedback specific to how stu-
dents structured their code, it’s impractical with limited course staff sizes and ever-increasing
enrollment. To hand-grade programming assignments would either take exorbitant amounts
of grader time or would require the assignments to be severely limited in sophistication and
length. A common solution to this is automatically grading code based on input/output
behavior. Courses often “autograde” programming assignments by running student code on
a suite of test inputs and checking whether the returned outputs match those given by the
reference implementation. Autograding a programming assignment is usually as simple as
running a script on each submission, making it take little to no grader time per student.

Autograding has its disadvantages, though. Firstly, as most interesting programming
problems take input from an infinite space (for example, any function which takes an integer
as input) it is impossible to test programs exhaustively. Instead, the graders who assemble
the test suite are burdened with figuring out a finite set of test inputs which will still
detect any incorrect implementation. This involves making blind guesses as to which inputs
incorrectly-behaving submissions would have incorrect behavior on, which in turn requires

2

Chapter 1. Introduction Zeus Vijay Ramamurthy

the grader to make blind guesses at how students with incorrect implementations would have
structured their code. With so much guesswork involved, it often ends up being the case
that students with incorrect code pass all (or almost all) of the test cases the autograder
runs their code against.

Secondly, even when graders are lucky enough to assemble a test suite that is exhaustive
enough, they are left with the question of how to assign grades based on the output from the
autograder. There is no reason to believe that the percentage of test cases a submission passes
has bearing on what percentage grade to award it, as even trivial incorrect implementations
can pass a high percentage of test cases. Take for example an assignment in which students
are asked to implement the merge function from mergesort. Given two sorted lists, the
merge function must return a sorted list containing all the elements of the two input lists.
An incorrect implementation which simply appends the two lists together would pass any test
case where one or both of the input lists is empty, or where all elements of the first list are less
than those of the second list. Unless the graders assembling the test suite take special care to
consider such trivial incorrect implementations and then reason about the distribution of test
cases to minimize the percentage of test cases passed by each trivial incorrect implementation,
students who write such implementations would be awarded inapproapriately high grades
by a course which assigns grades based on the percentage of test cases passed.

Third, even if a course staff is somehow able to assemble a perfect suite of test cases
unaffected by either of these problems, input-output-based autograding is inherently crip-
pled in the level of specificity it can grade to. An autograder would never be able to give
different feedback to two students whose implementations have identical input-output be-
havior but used completely different algorithms to achieve this. This is especially crippling
in assignments where students are expected to write code using a specific style or a specific
algorithm. In these situations, autograders provide little to no help toward assigning grades
to student code submissions. Courses often resort to hand-grading in these situations, which
as mentioned before is time-intensive.

Enter Zeus. Zeus allows a course staff to combine the fine-grained specficity and quality of
feedback afforded by hand-grading with the speed afforded by using computers to do some
of the grading work for you. Zeus operates on the philosophy that for any programming
problem in a homework, the vast majority of students are likely to arrive at one of a few
common (correct or incorrect) implementations. For each common implementation, rather
than separately grading each student who submitted an equivalent to this implementation,
a course staff could simply grade each implementation once and assign each student a grade
corresponding to that of the implmementation they submitted. Zeus is an efficient algorithm
which determines whether two pieces of code are equivalent with respect to grading purposes.
It uses this algorithm to arrange student code submissions into equivalence classes, which
can then each be graded once.

When graders reason about code, especially when reasoning about aspects of the code
such as algorithmic structure, asymptotic complexity, use of helper functions, etc., they tend
to think in terms of the structure of the code. Thus they abstract away stylistic details such
as choice of variable names, format of pattern-matching, organization of arithmetic, and use
of helper abstractions.

For example Figure 1.1 shows two snippets of code which merge two sorted lists toget-
her into a new sorted list, a step in the mergesort algorithm. Both approaches have the

3

Chapter 1. Introduction Zeus Vijay Ramamurthy

same philosophy: if either list is empty then return the other list; otherwise if they’re both
nonempty then return a list whose head is the smaller of the two heads and whose tail is
the remainder of the itemrs recursively merged. However the first implementation pattern
matches on both lists simultaneously whereas the second pattern matches on them separa-
tely; a difference which affects the syntactic structure of the code but doesn’t actually affect
the algorithm or how we should grade it. Therefore Zeus automatically recognizes the two
snippets equivalent.

fun merge (l1, l2) =

case (l1, l2) of

([], _) => l2

| (_::_, []) => l1

| (x::xs, y::ys) =>

if x < y

then x :: merge (xs , l2)

else y :: merge (l1 , ys)

fun merge (l1, l2) =

case l1 of

[] => l2

| x::xs =>

case l2 of

[] => l1

| y::ys =>

if x < y

then x :: merge (xs ,

l2)

else y :: merge (l1 ,

ys)

Figure 1.1: Two implementations of merging sorted lists

Figure 1.2 shows two pieces of code which take a list of pairs of numbers and produce a list
of each pair’s sum. The former directly writes a recursive function, while the second abstracts
the recursive nature of the implementation away to the library function map. Despite these
differences, both implmentations effectively do the same thing and so should be graded the
same way. Therefore Zeus indeed automatically recognizes that these implementations are
equivalent.

fun add_pairs [] = []

| add_pairs ((a, b)::xs) =

a+b :: add_pairs xs

fun map f =

let

val rec map_f = fn

[] => []

| x::xs => f x :: map_f

xs

in

map_f

end

val add_pairs = map op+

Figure 1.2: Two implementations of adding two optional numbers

4

Chapter 1. Introduction Zeus Vijay Ramamurthy

Figure 1.3 demonstrates two snippets of code which add two optional numbers together
and do so with particularly different style. The first approach directly pattern matches
on the optional numbers to perform the logic of adding the numbers together in the case
where both are non-null. The second approach on the other hand looks completely different.
Rather than directly appealing to the structure of optional values, the second approach
only interacts with them as a monadic structure, reflecting a different stylistic philosophy.
However as before, underneath this difference in style is the same underlying algorithmic
structure, so these pieces of code are equivalent for grading purposes. Appropriately, Zeus
automatically detects these pieces of code as the same.

fun add_opt x y =

case (x, y) of

(SOME m, SOME n) =>

SOME (m + n)

| (NONE , _) => NONE

| (_, NONE) => NONE

fun bind a f =

case a of

SOME b => f b

| NONE => NONE

val return = SOME

fun add_opt x y =

bind x (fn m =>

bind y (fn n =>

return (m + n)

))

Figure 1.3: Two implementations of adding two optional numbers

5

Chapter 2

Related Work

Program equivalence is a fundamental problem in computer science. There are two primary
philosophies in which program equivalence is studied.

In theoretical settings, the goal is often to develop relations which precisely capture
all situations in which programs are equivalent. These relations are used to reason about
equivalence, but tend to be defined in a declarative way which is not conducive to automa-
tic proof search. Observational equivalence/contextual equivalence and extensional equiva-
lence/extensional equivalence are examples of such relations [5] [2]. Godlin & Strichman [3]
present other relations for similar purposes. These are often used in proofs to show that
program behavior is preserved by a transformation or algorithm, as in the case of Acar et
al. [1] and Stone & Harper [9].

In more applied settings, sometimes we wish to automatically check that two programs
are equivalent. An example of this is in compilers; after a compiler applies a transformation
it can be useful to have it automatically check that the transformed program is equivalent
to the original one. Such approaches are exhibited by Kundu et al. [10] and Necula [8].
Lopes & Monteiro [7] present an algorithm for equivalence of programs with loops and
integer arithmetic. As arbitrary program equivalence is undecidable, algorithms for program
equivalence (such as ours) are weaker than equivalence relations developed for proofs.

Our algorithm is inspired by the one presented by Stone & Harper [9]. We prove our
algorithm sound with respect to extensional equivalence. Hopkins et al. [6] present an
algorithm for equivalence of a decidable fragment of ML. Our apporach differs from theirs
in that rather than selecting a subset of ML and aiming for completeness, our algorithm is
incomplete but operates over the full space of ML programs.

The primary purpose of our algorithm is application to education, as discussed in the
previous section. There are other efforts to use notions of program equivalence to aid in
working with mass amounts of student code. Gulwani et al. [4] present a similar approach
to ours, but applied to Python rather than ML. The notion of equivalence used in their work
is suited for simple imperative programs such as those prevalent in introductory courses
taught in Python, but does not apply well to higher-order functional programs like those in
courses taught in ML.

6

Chapter 3

LambdaPix

Our algorithm operates over a language which we call LambdaPix. In this section we present
the syntax and semantics for LambdaPix.

A design goal of LambdaPix is that it be easy to transpile functional programs into.
Programs written in ML-based languages, assuming they make limited use of complex fe-
atures like module systems and algebraic data type declarations, are easy to transpile into
LambdaPix. We have implemented transpilation from Standard ML into LambdaPix, and
transpilation from languages like OCaml and Haskell should be similarly easy to implement.

LambdaPix is so named because it is the lambda calculus enriched with pattern mat-
ching and fixed points. Arbitrary labeled product types are supported as labeled records.
For sum types and recursive types, LambdaPix is defined over an arbitrary fixed set of
algebraic data types, with associated injection labels.

Pattern matching plays a big role in LambdaPix, as it is the only mechanism for condi-
tional branching.

7

Chapter 3. LambdaPix Zeus Vijay Ramamurthy

3.1 Syntax

Figure 3.1 defines the syntax of LambdaPix.

pat p ::= wildcard pattern
x variable pattern
{`1 = p1, . . . , `n = pn} record pattern
x as p alias pattern
c constant pattern
`i,j · p injection pattern

exp e ::= c constant
x variable
{`1 = e1, . . . , `n = en} record
e · `i projection
`i,j · e injection
case e {p1.e1 | . . . | pn.en} case analysis
λx.e abstraction
e1 e2 application
fix x is e fixed point

Figure 3.1: The syntax of LambdaPix

3.2 Static Semantics

The Zeus algorithm is agnostic of a type system, so the following static semantics play no
role in how the algorithm operates. We still however present static semantics for LambdaPix
as we view Zeus as operating over a statically typed language. Despite the algorithm’s type
agnosticism, it is presented in terms of these static semantics so as to make it easier to
formally reason about.

LambdaPix’s static semantics are designed to be nonrestrictive and declarative enough
that any reasonable (not necessarily type-directed) transpilation from a well-formed ML-
like program would result in a well-formed LambdaPix program. This also helps keep the
algorithm language-agnostic.

We assume an arbitrary fixed set of algebraic data types with associated injection labels.
In particular, assume a fixed set of judgements of the form `i,j : τi,j ↪→ δi where i ranges over
the fixed set of algebraic data types and j ranges over the injection labels for data type i.
We take `i,j : τi,j ↪→ δi to mean that the type δi has a label `i,j which accepts arguments of
type τi,j. Note that by allowing τi,j to contain instances of δi, this data type system affords
LamdbaPix a form of inductive types.

Figure 3.2 define the types which LambdaPix expressions may range over. Base types
are the types of LambdaPix constants.

8

Chapter 3. LambdaPix Zeus Vijay Ramamurthy

typ τ ::= b base type
δi data type
{`1 : τ1, . . . , `n : τn} product type
τ1 → τ2 function type

Figure 3.2: The types of LambdaPix expressions

Figure 3.3 defines an auxillary judgement used in the typechecking of expressions: pattern
typing. The pattern typing judgement p :: τ a Γ defines that expressions of type τ can be
matched against the pattern p, and that doing so produces new variable bindings whose
types are captured in Γ. This is used in the typechecking of case expressions.

:: τ a PatTy1 x :: τ a x : τ
PatTy2

p1 :: τ1 a Γ1 . . . pn :: τn a Γn
{l1 = p1, . . . , ln = pn} :: {`1 : τ1, . . . , `n : τn} a Γ1 . . .Γn

PatTy3

p :: τ a Γ

x as p :: τ a Γ, x : τ
PatTy4 c :: b a PatTy5

`i,j : τi,j ↪→ δi p :: τi,j a Γ

`i,j · p :: δi a Γ
PatTy6

Figure 3.3: Pattern typing in LambdaPix

Figure 3.4 defines typing for expressions in LambdaPix. A LambdaPix expression e is
well-formed if there exists a type τ such that · ` e : τ is derivable from the above typing
rules.

Not captured in the type system of LambdaPix are the following two restrictions:

• No variable may appear more than once in a pattern.

• The patterns of a case expression must be exhaustive.

3.3 Dynamic Semantics

Here we define how LambdaPix expressions evaluate. We define evaluation as a small-step
dynamic semantics where the judgement e =⇒ e′ means that e steps to e′ and the judgement
e val means that e is a value and doesn’t step any further. LambdaPix enjoys progress and
preservation: for any typing context Γ and expression e such that Γ ` e : τ it is either the
case that there exists an expression e′ such that e =⇒ e′ (in which case Γ ` e′ : τ as well) or
e val. The finality of values is also enjoyed: it is never simultaneously the case that e =⇒ e′

and e val.
To define evaluation we first define two helper judgements to deal with pattern matching

(Figure 3.5). The judgement v � p a b means the expression v matches to the pattern p

9

Chapter 3. LambdaPix Zeus Vijay Ramamurthy

Γ ` c : b
Ty1 Γ, x : τ ` x : τ

Ty2

Γ ` e1 : τ1 . . . Γ ` en : τn
Γ ` {`1 = e1, . . . , `n = en} : {`1 : τ1, . . . , `n : τn}

Ty3
Γ ` e : {. . . , `i : τi, . . .}

Γ ` e · `i : τi
Ty4

`i,j : τi,j ↪→ δi Γ ` e : τi,j
Γ ` `i,j · e : δi

Ty5

Γ ` e : τ Γ ` p1 :: τ a Γ1 Γ,Γ1 ` e1 : τ ′ . . . Γ ` pn :: τ a Γn Γ,Γn ` en : τ ′

Γ ` case e {p1.e1 | . . . | pn.en} : τ ′
Ty6

Γ, x : τ1 ` e : τ2

Γ ` λx.e : τ1 → τ2
Ty7

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2
Ty8

Γ, x : τ ` e : τ

Γ ` fix x is e : τ
Ty9

Figure 3.4: Expression typing in LambdaPix

producing the bindings b, and the judgement v \� p which means the expression v does not
match to the pattern p. It is assumed as a precondition to these judgements that v val,
` v : τ , and p :: τ . Pattern matching in LambdaPix enjoys the property that for any v

v � a Match1 v � x a v/x Match2

v1 � p1 a b1 . . . vn � pn a bn
{`1 = v1, . . . , `n = vn} � {`1 = p1, . . . , `n = pn} a b1 . . . bn

Match3

vi \� pi
{`1 = v1, . . . , `n = vn} \� {`1 = p1, . . . , `n = pn}

Match4

v � p a b
v � x as p a b, v/x Match5

v \� p

v \� x as p
Match6

c1 = c2

c1 � c2 a
Match7

c1 6= c2

c1 \� c2
Match8

j = k v � p a b
`i,j · v � `i,k · p a b

Match9
j 6= k

`i,j · v \� `i,k · p
Match10

j = k v \� p

`i,j · v \� `i,k · p
Match11

Figure 3.5: Pattern Matching in LambdaPix

and p satisfying the above preconditions it is either the case that there exist bindings b such
that v � p a b, or v \� p. It is never simultaneously the case that v � p a b and v \� p.

In Figure 3.6 we use these helper judgements to define the evaluation judgements.
The keen reader may observe that rule Dyn9 is nondeterministic as it does not specify

which branch is taken when multiple patterns are matched. This rule is presented as it
is to make it more straightforward to justify the algorithm’s soundness. To resolve this

10

Chapter 3. LambdaPix Zeus Vijay Ramamurthy

c val
Dyn1

∀1 ≤ j < i.ej val ei =⇒ e′i
{. . . , `i = ei, . . .} =⇒ {. . . , `i = e′i, . . .}

Dyn2

∀1 ≤ j ≤ n.ej val

{`1 = e1, . . . , `n = en} val
Dyn3

e =⇒ e′

e · `i =⇒ e′ · `i
Dyn4

{. . . , `i = ei, . . .} val
{. . . , `i = ei, . . .} · `i =⇒ ei

Dyn5
e =⇒ e′

`i,j · e =⇒ `i,j · e′
Dyn6

e val
`i,j · e val

Dyn7

e =⇒ e′

case e {p1.e1 | . . . | pn.en} =⇒ case e′ {p1.e1 | . . . | pn.en}
Dyn8

e val e � pi a b
case e {. . . | pi.ei | . . .} =⇒ [b]ei

Dyn9
λx.e val

Dyn10

e1 =⇒ e′1
e1 e2 =⇒ e′1 e2

Dyn11

e1 val e2 =⇒ e′2
e1 e2 =⇒ e1 e

′
2

Dyn12
e2 val

(λx.e) e2 =⇒ [e2/x]e
Dyn13

fix x is e =⇒ [fix x is e/x]e
Dyn14

Figure 3.6: Dynamic semantics of LambdaPix

nondeterminism, assume that the branch corresponding to the first matched pattern is the
one taken by the dynamics.

We use these judgements to define what it means for an expression to evaluate to a value.
We use e ⇓ v to denote that e evaluates to v. In Figure 3.7 big-step dynamics are defined as
the transitive closure of the small-step dynamics:

v val
v ⇓ v BigDyn1

e =⇒ e′ e ⇓ v
e ⇓ v BigDyn2

Figure 3.7: Big-Step Dynamic Semantics of LambdaPix

11

Chapter 4

The Algorithm

The algorithm takes as input two LambdaPix expressions of the same type and outputs a
boolean value indicating whether they have been found to be equal. It generates a proposi-
tional logic formula which is valid only if the two expressions are equivalent, then makes use
of an SMT solver to check whether the formula is valid.

4.1 Propositional Logic Formulas

Figure 4.1 defines the form of the formulas generated by the algorithm. The leaves of these
formulas are equalities between LambdaPix terms. A structural equality e1 = e2 is true if
e1 and e2 are identical and false otherwise. The only two connectives are conjunction and
implication. A conjunction σ1 ∧ σ2 is true if both σ1 and σ2 are true, and false otherwise.
An implication σ1 ⇒ σ2 is true either if σ1 is false or if σ2 is true.

σ ::= e1 = e2 structural expression equality
σ1 ∧ σ2 conjunction
σ1 ⇒ σ2 implication

Figure 4.1: Propositional Logic Formulas

Validity
val

∀ Γ.σ

Formulas may contain free variables which must be resolved in order to gauge the formula’s
truth value. For our purposes, free variables will only appear inside expressions used in
structural equality formulas. We therefore define variable substitution into formulas as
substituting into these expressions; for example, [3/x](x = 1 ∧ 2 = x) yields 3 = 1 ∧ 2 = 3.

A formula is valid if it is true under all possible substitutions of its variables. To denote

this, we first define a new form of judgement: If Γ = ~x : ~τ , then the judgement
val

∀ Γ.j holds
if for all ~v where vi : τi and vi val for all vi ∈ ~v, it is the case that [~v/~x]j holds. Then if Γ is

12

Chapter 4. The Algorithm Zeus Vijay Ramamurthy

a typing context with a mapping for every free variable in a formula σ, the validity of σ is

denoted
val

∀ Γ.σ.

4.2 Formula Generation

The most important judgement for formula generation is Γ ` e1 ⇔ e2 : τ a Γ′;σ. Two
expressions e1 and e2 where · ` e1 : τ and · ` e2 : τ are isomorphic if · ` e1 ⇔ e2 : τ a Γ′;σ
and ∀Γ′ .σ.

To define this judgement we begin by defining a few helper judgements.

Weak Head Normal Reduction e ↓ e′

It would be wasteful to fully evaluate each expression at each recursive iteration of the
algorithm, as at any point we look no deeper than the head symbol. Additionally, we don’t
even have the option of fully evaluating the expressions during the execution of the algorithm,
as expressions may contain free variables in redex positions. For this reason we instead use
weak head normal reduction at each step; this eliminates head-position redexes until free
variables get in the way. It does not evaluate subexpressions any more than necessary. This
approach is inspired by Stone & Harper [9].

e e′ e′ ↓ e′′
e ↓ e′′ BigWhnf1

e 6
e ↓ e BigWhnf2

e1 e′1
e1 e2 e′1 e2

Whnf1 (λx.e1)e2 [e2/x]e1
Whnf2

e e′

e · `i e′ · `i
Whnf3

{. . . , `i = e, . . .} · `i e
Whnf4

Atomic Expressions e atomic

The algorithm can be thought of as breaking down expressions until they are “small enough”
to be used in a structural equality formula. The judgement e atomic defines that e is small
enough for this. An expression is atomic if it does not contain complicated constructs like
functions, applications, fixed points, or case expressions.

c atomic
Atomic1 x atomic

Atomic2

e1 atomic . . . en atomic

{`1 = e1, . . . , `n = en} atomic
Atomic3

e atomic
e · `i atomic

Atomic4
e atomic

`i · e atomic
Atomic5

Freshening freshen p.e ↪→ p′.e′

It is sometimes useful to generate fresh variables to avoid variable capture. As single variables
aren’t the only form of binding sites in LamdbaPix, we generalize this notion to patterns.

13

Chapter 4. The Algorithm Zeus Vijay Ramamurthy

When freshen p.e ↪→ p′.e′, p′.e′ is the same as p.e except with all variables bound by p having
been alpha-varied to fresh variables.

freshen .e ↪→ .e
Freshen1

y fresh

freshen x.e ↪→ y.[y/x]e
Freshen2

freshen p1.e ↪→ p′1.e1 . . . freshen pn.en−1 ↪→ p′n.en
freshen {`1 = p1, . . . , `n = pn}.e ↪→ {`1 = p′1, . . . , `n = p′n}.en

Freshen3

y fresh freshen p.e ↪→ p′.e′

freshen x as p.e ↪→ y as p′.[y/x]e′
Freshen4 freshen c.e ↪→ c.e

Freshen5

freshen p.e ↪→ p′.e′

freshen `i · p.e ↪→ `i · p′.e′
Freshen6

Formula Generation for Expressions Γ ` e1 ⇔ e2 : τ a Γ′;σ

This judgement is mutually recursive with Γ ` e1 ↔ e2 : τ a Γ′;σ.
When Γ ` e1 ⇔ e2 : τ a Γ′;σ, the only free variables appearing in e1 and e2 are in Γ so

Γ ` e1 : τ and Γ ` e2 : τ . σ on the other hand can contain more free variables than just
those in Γ. The purpose of Γ′ is to describe the rest of the variables in σ. Γ and Γ′ are
disjoint and between them account for all variables which may appear in σ.

e1 ↓ e′1 e2 ↓ e′2 Γ ` e′1 ↔ e′2 : τ a Γ′;σ

Γ ` e1 ⇔ e2 : τ a Γ′;σ
IsoExp

Formula Generation for WHNF Expressions Γ ` e1 ↔ e2 : τ a Γ′;σ

This judgement does the bulk of the work for the algorithm. It assumes as a precondition
that e1 and e2 are in weak head normal form. As with formula generation for arbitrary
expressions, Γ ` e1 : τ , Γ ` e2 : τ , Γ and Γ′ are disjoint, and all the free variables in σ are

14

Chapter 4. The Algorithm Zeus Vijay Ramamurthy

captured within Γ and Γ′.

e1 atomic e2 atomic
Γ ` e1 ↔ e2 : τ a ·; e1 = e2

Iso1

Γ ` e1 ⇔ e′1 : τ1 a Γ′1;σ1 . . . Γ ` en ⇔ e′n : τn a Γ′n;σn
Γ ` {`1 = e1, . . . , `n = en} ↔ {`1 = e′1, . . . , `n = e′n} : {`1 : τ1, . . . , `n : τn} a Γ′1, . . . ,Γ

′
n;σ1 ∧ . . . ∧ σn

Iso2

Γ ` e1 ↔ e2 : {. . . , `i : τi, . . .} a Γ′;σ

Γ ` e1 · `i ↔ e2 · `i : τi a Γ′;σ
Iso3

`j : τi,j ↪→ δi Γ ` e1 ⇔ e2 : τi,j a Γ′;σ

Γ ` `j · e1 ↔ `j · e2 : δi a Γ′;σ
Iso4

e atomic ∀i∈[n] (freshen pi.ei ↪→ p′i.e
′
i p′i :: τ ′ a Γi Γ,Γi ` e′i ⇔ e′ : τ a Γ′i;σi)

Γ ` case e {p1.e1 | . . . | pn.en} ↔ e′ : τ a Γ1,Γ
′
1, . . . ,Γn,Γ

′
n;∧i∈[n] (e = p′i ⇒ σi)

Iso5

e atomic ∀i∈[n] (freshen pi.ei ↪→ p′i.e
′
i p′i :: τ ′ a Γi Γ,Γi ` e′ ⇔ e′i : τ a Γ′i;σ1)

Γ ` e′ ↔ case e {p1.e1 | . . . | pn.en} : τ a Γ1,Γ
′
1, . . . ,Γn,Γ

′
n;∧i∈[n] (e = p′i ⇒ σi)

Iso6

Γ ` e↔ e′ : τ ′ a Γ′;σ x fresh Γ, x : τ ′ ` case x {. . .} ↔ case x {. . .′} : τ a Γ′′;σ′

Γ ` case e {. . .} ↔ case e′ {. . .′} : τ a Γ′, x : τ ′,Γ′′;σ ∧ σ′ Iso7

x fresh Γ, x : τ ` [x/x1]e1 ⇔ [x/x2]e2 : τ ′ a Γ′;σ

Γ ` λx1.e1 ↔ λx2.e2 : τ → τ ′ a x : τ,Γ′;σ
Iso8

Γ ` e1 ↔ e2 : τ → τ ′ a Γ′;σ Γ ` e′1 ⇔ e′2 : τ a Γ′′;σ′

Γ ` e1 e
′
1 ↔ e2 e

′
2 : τ ′ a Γ′,Γ′′;σ ∧ σ′ Iso9

x fresh Γ, x : τ ` [x/x1]e1 ⇔ [x/x2]e2 : τ a Γ′;σ

Γ ` fix x1 is e1 ↔ fix x2 is e2 : τ a x : τ,Γ′;σ
Iso10

15

Chapter 5

Operation

In this section, we understand the algorithm by looking at how it operates on the two
programs in Figure 1.3. As we step through this example, we will refer to the inference rules
from the previous section and watch how they are applied. First, we transpile both programs
to LambdaPix. This is shown in Figure 5.1.

λ x . λ y .

case (x, y) of

(SOME·m, SOME·n) . SOME·(m
+ n)

| (NONE·(), _) . NONE·()
| (_, NONE·()) . NONE·()

(λ return . λ bind .

λ x . λ y .

bind x (λ m .

bind y (λ n .

return (m + n)

))

)

(λ e . SOME·e)
(λ a . λ f .

case a of

SOME·b . f b

| NONE·() . NONE·()
)

Figure 5.1: Figure 1.3, translated to LambdaPix

Since much of the proof derivation which drives the algorithm is free of branching, through
most of this section we will view the algorithm as transforming the above programs through
the application of rules, rather than building up a proof tree.

The entry point to the algorithm is the Γ ` e1 ⇔ e2 : τ a Γ′;σ judgement, defined
by rule IsoExp. By this rule, we reduce both programs to weak head normal form then
apply the Γ ` e1 ↔ e2 : τ a Γ′;σ judgement to them. The first program is already in weak
head normal form. To get the second program into weak head normal form, we apply the
beta reduction rules Whnf1 and Whnf2 a few times. After weak head normal reducing the
second program, we are left with the pair of programs in Figure 5.2.

Next since both programs are lambda expressions with two curried arguments, we pro-
ceed with two applications of the extensionality rule Iso8. This constitutes making up a

16

Chapter 5. Operation Zeus Vijay Ramamurthy

λ x . λ y .

case (x, y) of

(SOME·m, SOME·n) . SOME·(m
+ n)

| (NONE·(), _) . NONE·()
| (_, NONE·()) . NONE·()

λ x . λ y .

(λ a . λ f .

case a of

SOME·b . f b

| NONE·() . NONE·()
) x (λ m .

(λ a . λ f .

case a of

SOME·b . f b

| NONE·() . NONE·()
) y (λ n .

(λ e . SOME·e) (m + n)

))

Figure 5.2: Figure 5.1 after reducing to WHNF

fresh variable for the function argument and substituting this same fresh variable into both
programs for the function argument. Since these variables are named the same in both pro-
grams, for the sake of this demonstration we’ll simply “substitute” the variables named x

with x and the ones named y with y. These applications of Iso8 gets us to Figure 5.3.

case (x, y) of

(SOME·m, SOME·n) . SOME·(m +

n)

| (NONE·(), _) . NONE·()
| (_, NONE·()) . NONE·()

(λ a . λ f .

case a of

SOME·b . f b

| NONE·() . NONE·()
) x (λ m .

(λ a . λ f .

case a of

SOME·b . f b

| NONE·() . NONE·()
) y (λ n .

(λ e . SOME·e) (m + n)

))

Figure 5.3: Figure 5.2 after applying Iso8 twice

Since the premise of Iso8 invokes the ⇔ judgement, we again reduce to WHNF. This
constitutes more beta reductions. This next step is shown in Figure 5.4.

Since both programs are case expressions, we now need to choose between rules Iso5, Iso6,
and Iso7. We always prefer Iso5 and Iso6 over Iso7 because the “asymmetric” case rules
are more intellgent than the “symmetric” one. However, the asymmetric rules can’t always
be applied; they only can be when the subject of the case expression is atomic. Fortunately,
by rules Atomic2 and Atomic3, the subjects of these case expressions are atomic, so we can

17

Chapter 5. Operation Zeus Vijay Ramamurthy

case (x, y) of

(SOME·m, SOME·n) . SOME·(m +

n)

| (NONE·(), _) . NONE·()
| (_, NONE·()) . NONE·()

case x of

SOME·b .

(λ m .

(λ a . λ f .

case a of

SOME·b . f b

| NONE·() . NONE·()
) y (λ n .

(λ e . SOME·e) (m + n)

)) b

| NONE·() . NONE·()

Figure 5.4: Figure 5.3 after reducing to WHNF

use Iso5 and Iso6. The order in which they are applied make no difference, so we arbitrarily
apply Iso5 first. As there are three branches in the first program’s case expression, the
algorithm now splits into three branches. To get a feel for the algorithm we’ll explicitly step
through just the first of these branches, as the other ones work in similar ways.

We “freshen” the branch selected to avoid variable capture. In this situation we’ll freshen
the first branch of the case expression in the first program by replacing m and n with m1 and
n1, respectively. From this branch we’ll generate a formula of the form

((x, y) = (SOME·m1, SOME·n1))⇒ . . .

where the . . . is what we are going to fill in as we complete this branch of the algorithm. We
are now at the point shown in Figure 5.5.

SOME·(m1 + n1)

case x of

SOME·b .

(λ m .

(λ a . λ f .

case a of

SOME·b . f b

| NONE·() . NONE·()
) y (λ n .

(λ e . SOME·e) (m + n)

)) b

| NONE·() . NONE·()

Figure 5.5: The first branch of the algorithm after applying Iso5 to Figure 5.4

We next do a similar step by applying rule Iso6, which branches the algorithm into two.
We again focus on the first branch. Iso6 again calls for the branch to be freshened, which

18

Chapter 5. Operation Zeus Vijay Ramamurthy

we will demonstrate by replacing b with b1. This branch will therefore generate a formula
of the form

(x = SOME·b1)⇒ . . .

where again, the rest of this branch will fill in the This brings us to Figure 5.6.

SOME·(m1 + n1)

(λ m .

(λ a . λ f .

case a of

SOME·b . f b

| NONE·() . NONE·()
) y (λ n .

(λ e . SOME·e) (m + n)

)) b1

Figure 5.6: The first branch of the algorithm after applying Iso6 to Figure 5.5

We next reduce to WHNF again, which beta reduces the second program: Figure 5.7.

SOME·(m1 + n1)

case y of

SOME·b .

(λ n .

(λ e . SOME·e) (b1 + n)

) b

| NONE·() . NONE·()

Figure 5.7: Figure 5.6 converted to WHNF

Next we apply Iso6 again. We’ll freshen by replacing b with b2 1. This again branches
the proof into two. The first branch corresponds to

(y = SOME·b2)⇒ . . .

where we’ll fill in the . . . next. Taking the first branch brings us to Figure 5.8.

SOME·(m1 + n1)

(λ n .

(λ e . SOME·e) (b1 + n)

) b2

Figure 5.8: The first branch after applying Iso6 to Figure 5.7

We convert to WHNF again, performing beta reductions, bringing us to Figure 5.9.

1This demonstrates the necessity of freshening; without it the variable b would have two different mea-
nings.

19

Chapter 5. Operation Zeus Vijay Ramamurthy

SOME·(m1 + n1) SOME·(b1 + b2)

Figure 5.9: Figure 5.8 after converting to WHNF

As these expressions are both atomic, we complete this branch of the algorithm by gene-
rating the formula

SOME·(m1+n1) = SOME·(b1+b2)

.
Putting together all the branches we’ve looked at, our overall formula will look something

like:

(((x, y) = (SOME·m1, SOME·n1))⇒
((x = SOME·b1)⇒

(y = SOME·b2)⇒ (SOME·(m1+n1) = SOME·(b1+b2))∧
. . .

)∧
. . .

)∧
. . .

where the . . . now correspond to the branches of the algorithm we didn’t explicitly step into.

20

Chapter 5. Operation Zeus Vijay Ramamurthy

Adding in these other branches, we get the full formula:

(((x, y) = (SOME·m1, SOME·n1))⇒
((x = SOME·b1)⇒

(y = SOME·b2)⇒ (SOME·(m1+n1) = SOME·(b1+b2))∧
(y = NONE·())⇒ (SOME·(m1+n1) = NONE·())

)∧
((x = NONE·())⇒

(y = SOME·b2)⇒ (SOME·(m1+n1) = NONE·())∧
(y = NONE·())⇒ (SOME·(m1+n1) = NONE·())

)

)∧
(((x, y) = (NONE·(),))⇒

((x = SOME·b1)⇒
(y = SOME·b2)⇒ (NONE·() = SOME·(b1+b2))∧
(y = NONE·())⇒ (NONE·() = NONE·())

)∧
((x = NONE·())⇒

(y = SOME·b2)⇒ (NONE·() = NONE·())∧
(y = NONE·())⇒ (NONE·() = NONE·())

)

)∧
(((x, y) = (, NONE·()))⇒

((x = SOME·b1)⇒
(y = SOME·b2)⇒ (NONE·() = SOME·(b1+b2))∧
(y = NONE·())⇒ (NONE·() = NONE·())

)∧
((x = NONE·())⇒

(y = SOME·b2)⇒ (NONE·() = NONE·())∧
(y = NONE·())⇒ (NONE·() = NONE·())

)

)

This formula is then fed into an SMT solver to determine whether it’s valid. In this
situation, since the two programs are indeed equivalent, this formula is valid.

21

Chapter 6

Soundness

The Zeus algorithm is not complete, but it is sound. This means that if two programs are
equivalent, it’s possible that Zeus would not recognize them as equivalent; however, if Zeus
recognizes two programs as equivalent then they must actually be equivalent.

6.1 Extensional Equivalence

To prove the soundness of Zeus, we must first define what it means for two programs to
actually be equivalent. For this we introduce extensional equivalence, a widely accepted
notion of equivalence. Prior work has shown that extensional equivalence is the same as
contextual equivalence, and so two programs which are extensionally equivalent are effecti-
vely indistinguishable in terms of behavior. Extensional equivalence is also an equivalence
relation, so we may assume that it is reflexive, symmetric, and transitive. LambdaPix enjoys
referential transparency, meaning that extensional equivalence of LambdaPix expressions is
closed under replacement of subexpressions with extensionally equivalent subexpressions.

We use e1
∼= e2 : τ to denote that expressions e1 and e2 are extensionally equivalent and

both have the type τ . Unlike our algorithm, extensional equivalence inducts over the types
of the expressions rather than their syntax, and is defined only over closed expressions. A
precondition to the judgement e1

∼= e2 : τ is that ` e1 : τ and ` e2 : τ .
As we are only concerned with proving our algorithm sound over valuable expressions, we

leave extensional equivalence undefined for divergent expressions. We define that e1
∼= e2 : τ

if · ` e1 : τ , · ` e2 : τ , e1 ⇓ v1, e2 ⇓ v2, and

1. Rule EQ1: In the case that τ = τ1 → τ2, for all expressions v such that · ` v : τ1,
v1 v ∼= v2 v : τ2.

2. Rule EQ2: In the case that τ is not an arrow type, for all patterns p such that p :: τ ,
either v1 � p a b and v2 � p a b or v1 \� p and v2 \� p.

This is an atypical formalization of extensional equivalence; it is typically defined in terms of
the elimination forms of each type connective. However, since pattern matching in Lambda-
Pix subsumes the elimination of all connectives other than arrows, we simply define equiva-
lence at all non-arrow types in terms of pattern matching.

22

Chapter 6. Soundness Zeus Vijay Ramamurthy

6.2 Proof

Here we prove that Zeus is sound. This proof makes use of a few lemmas:

• Lemma 1: if Γ ` e1 ⇔ e2 : τ a Γ′;σ or Γ ` e1 ↔ e2 : τ a Γ′;σ, then Γ and Γ′ are
disjoint. Proof : by induction on Γ ` e1 ⇔ e2 : τ a Γ′;σ and Γ ` e1 ↔ e2 : τ a Γ′;σ

• Lemma 2: WHNF reduction preserves equivalence:
if Γ ` e′1 ∼= e′2, e1 ↓ e′1, and e2 ↓ e′2, then Γ ` e1

∼= e2. Proof : By induction on e e′

and appealing to the dynamics, we have that if Γ ` e′1 ∼= e′2, e1 e′1, and e1 e′2 then
Γ ` e1

∼= e2. The rest goes through by induction on e ↓ e′.

• Lemma 3: If Γ ` v : τ , p :: τ a Γ′, Γ,Γ′ ` e : τ ′, v � p a b, and freshen p.e ↪→ p′.e′, then
v � p′ a b′ and [b]e = [b′]e′. Proof : by induction on freshen p.e ↪→ p′.e′.

• Lemma 4: If v � p a b then v = [b]p. Proof : by induction on v � p a b.

• Lemma 5: If e1
∼= e2 : τ , e1 ⇓ v1, and e2 ⇓ v2, then for all patterns p where p :: τ a Γ,

it is the case that either v1 � p a b and v1 � p a b or v1 \� p and v2 \� p. Proof : by
induction on e1

∼= e2 : τ . If τ = τ1 → τ2 then by inversion of p :: τ a Γ, p must either
be a wildcard or a variable. Then by Match1 and Match2, we have that v1 � p a b
and v2 � p a b. If τ is not an arrow type, then we conclude by EQ2.

• Lemma 6: If e atomic then ` e : τ where τ is not an arrow type. Proof : by induction
on e atomic and appealing to the statics.

• Lemma 7: If Γ ` e : τ , e atomic, and e is in weak head normal form, then
val

∀ Γ.e val.
Proof : by induction on e atomic and appealing to the dynamics.

We state the theorem of soundness which we will prove:

Theorem For any expressions e1 and e2,

if · ` e1 ⇔ e2 : τ a Γ′;σ and
val

∀ Γ′ .σ then e1
∼= e2 : τ .

Proof As the Γ ` e1 ⇔ e2 : τ a Γ′;σ judgement is defined simultaneously with the
Γ ` e1 ↔ e2 : τ a Γ′;σ judgement, we prove the theorem by simultaneous induction on both

of these judgements. We also use the
val

∀ Γ.j judgement to strengthen the inductive hypotheses

to account for variables. Recall that if Γ = ~x : ~τ , then the judgement
val

∀ Γ.j holds if for all ~v
where vi : τi and vi val for all vi ∈ ~v, it is the case that [~v/~x]j holds. The theorem we wish
to show by induction is then:

• If Γ ` e1 ⇔ e2 : τ a Γ′;σ then
val

∀ Γ.

(
if

(
val

∀ Γ′ .σ

)
then e1

∼= e2 : τ

)
.

• If Γ ` e1 ↔ e2 : τ a Γ′;σ then
val

∀ Γ.

(
if

(
val

∀ Γ′ .σ

)
then e1

∼= e2 : τ

)
.

23

Chapter 6. Soundness Zeus Vijay Ramamurthy

We first verify that this is sufficient to show the theorem. Indeed, when · ` e1 ⇔ e2 : τ a

Γ′;σ we have
val

∀ ·.
(

if

(
val

∀ Γ′ .σ

)
then e1

∼= e2 : τ

)
. As the outer quantifier quantifies over no

variables, we have that if

(
val

∀ Γ′ .σ

)
then e1

∼= e2 : τ . This together with the assumption that

val

∀ Γ′ .σ allows us to conclude that e1
∼= e2 : τ .

We proceed to prove each rule. In cases where the exact type of the expressions are
obvious or irrelevant, we use the shorthand e ∼= e′ to mean that e ∼= e′ : τ for some type τ .

• IsoExp: Let Γ = ~x : ~τ and let ~v be arbitrary where vi : τi and vi val for all vi ∈ ~v.

Assume [~v/~x]

(
val

∀ Γ′ .σ

)
.

It must be shown that [~v/~x](e1
∼= e2).

By the inductive hypothesis we have that
val

∀ Γ.

(
if

(
val

∀ Γ′ .σ

)
then e′1

∼= e′2

)
, and there-

fore

[~v/~x]

(
if

(
val

∀ Γ′ .σ

)
then e′1

∼= e′2

)
equivalently,

if [~v/~x]

(
val

∀ Γ′ .σ

)
then [~v/~x](e′1

∼= e′2)

As we have [~v/~x]

(
val

∀ Γ′ .σ

)
by assumption, we may conclude

[~v/~x](e′1
∼= e′2)

• Iso1: Let Γ = ~x : ~τ and let ~v be arbitrary where vi : τi and vi val for all vi ∈ ~v. Assume

[~v/~x]

(
val

∀ ·.e1 = e2

)
, or equivalently [~v/~x](e1 = e2).

It must be shown that [~v/~x](e1
∼= e2).

As [~v/~x](e1 = e2), we have [~v/~x](e1
∼= e2) by reflexivity.

• Iso2: Let Γ = ~x : ~τ and let ~v be arbitrary where vi : τi and vi val for all vi ∈ ~v. Assume

[~v/~x]

(
val

∀ Γ′
1,...,Γ

′
n
.σ1 ∧ . . . σn

)
.

It must be shown that [~v/~x]({`1 = e1, . . . , `n = en} ∼= {`1 = e′1, . . . , `n = e′n}).

By conjunction and that all the Γ′i are disjoint, we have that for all i ∈ [n],
val

∀ Γ′
i
.σi.

Then by the inductive hypotheses we have that [~v/~x](ei ∼= e′i : τi). Let [~v/~x]ei ⇓ vi and
[~v/~x]e′i ⇓ v′i. By Lemma 5 we have that for all pi where pi :: τi a Γi, either vi � pi a bi
and v′i � pi a bi or v′i \� pibi.

To appeal to EQ2, let p be an arbitrary pattern such that p :: {`1 : τ1, . . . , `n : τn} a Γ′.
We proceed by cases:

24

Chapter 6. Soundness Zeus Vijay Ramamurthy

– In the case that for all i ∈ [n] vi � pi a b and v′i � pi a b, by Match3 we have
{`1 = v1, . . . , `n = vn} � p a b and {`1 = v′1, . . . , `n = v′n} � p a b.

– In the case that there is some i ∈ [n] where vi \� pi and v′i \� pi, by Match4 we
have {`1 = v1, . . . , `n = vn} \� p and {`1 = v′1, . . . , `n = v′n} \� p.

Since in all cases either {`1 = v1, . . . , `n = vn}�p a b and {`1 = v′1, . . . , `n = v′n}�p a b
or {`1 = v1, . . . , `n = vn} \� p and {`1 = v′1, . . . , `n = v′n} \� p, by EQ2, we may conclude

[~v/~x]({`1 = e1, . . . , `n = en} ∼= {`1 = e′1, . . . , `n = e′n})

• Iso3: Let Γ = ~x : ~τ and let ~v be arbitrary where vi : τi and vi val for all vi ∈ ~v. Assume

[~v/~x]

(
val

∀ Γ′ .σ

)
.

It must be shown that [~v/~x](e1 · `i ∼= e2 · `i).

By the inductive hypothesis we have
val

∀ Γ.

(
if

(
val

∀ Γ′ .σ

)
then e1

∼= e2

)
, and therefore

[~v/~x]

(
if

(
val

∀ Γ′ .σ

)
then e1

∼= e2

)
equivalently,

if [~v/~x]

(
val

∀ Γ′ .σ

)
then [~v/~x](e1

∼= e2)

As we have [~v/~x]

(
val

∀ Γ′ .σ

)
by assumption, we may conclude

[~v/~x](e1
∼= e2)

As extensional equivalence is the same as contextual equivalence, from this we may
conclude

[~v/~x](e1 · `i ∼= e2 · `i)

• Iso4: For the same reasons as in the proof for Iso3, we have that [~v/~x](e1
∼= e2). As

extensional equivalence is the same as contextual equivalence, we may then conclude

[~v/~x](`i,j · e1
∼= `i,j · e2)

• Iso5: Let Γ = ~x : ~τ and let ~v be arbitrary where vi : τi and vi val for all vi ∈ ~v. Assume

[~v/~x]
val

∀ Γ1,Γ′
1,...,Γn,Γ′

n
. ∧i∈[n] (e = p′i ⇒ σi).

It must be shown that [~v/~x] (case e {p1.e1 | . . . | pn.en}) ∼= [~v/~x]e′.

By inversion of the statics we have that Γ ` e : τ ′; by assumption we have that e atomic
and e is in weak head normal form. Therefore by Lemma 7 we have that [~v/~x]e val.

Since case expressions are enforced to be exhaustive, there must be some pi such that
[~v/~x]e � pi a b. By Lemma 3 let [~v/~x]e � p′i a b′.

25

Chapter 6. Soundness Zeus Vijay Ramamurthy

By our assumption and the semantics of conjunction we have that

[~v/~x]
val

∀ Γ1,Γ′
1,...,Γn,Γ′

n
. (e = p′i ⇒ σi)

Since e only contains variables in Γ, p′i only contains variables in Γi, and σi only
contains variables in Γ Γi and Γ′i, this can be strengthened to:

[~v/~x]
val

∀ Γi,Γ′
i
. (e = p′i ⇒ σi)

Since Γ, Γi, and Γ′i are disjoint, this is equivalent to:

val

∀ Γi,Γ′
i
. ([~v/~x]e = [~v/~x]p′i ⇒ [~v/~x]σi)

Then since pi only contains variables in Γi (and therefore none of ~x), we have: Since
Γ, Γi, and Γ′i are disjoint, this is equivalent to:

val

∀ Γi,Γ′
i
. ([~v/~x]e = p′i ⇒ [~v/~x]σi)

Since p′i contains only variables in Γi, we may partially invoke this result with b′ which
gives us:

[b′]
val

∀ Γ′
i
. ([~v/~x]e = p′i ⇒ [~v/~x]σi)

Since Γi and Γ′i are disjoint and since e contains no variables in Γi, we can rearrange
this to get:

val

∀ Γ′
i
. ([~v/~x]e = [b′]p′i ⇒ [b′][~v/~x]σi)

By Lemma 4, [~v/~x]e = [b′]p′i is true so this is equivalent to:

val

∀ Γ′
i
. ([b′][~v/~x]σi)

Once again rearranging because Γ, Γi, and Γ′i are disjoint, we get: [~v/~x][b′]
val

∀ Γ′
i
.σi.

This allows us to invoke the inductive hypothesis to get: [~v/~x][b′]e′i
∼= [~v/~x][b′]e′ : τ .

Since the variables in b′ don’t appear in e′, this is equivalent to: [~v/~x][b′]e′i
∼= [~v/~x]e′ : τ .

By Lemma 3, this is equivalent to: [~v/~x][b]ei ∼= [~v/~x]e′ : τ .

By Dyn9, [~v/~x] (case e {p1.e1 | . . . | pn.en}) =⇒ [~v/~x][b]ei.

Therefore since extensional equivalence is closed under evaluation, [~v/~x] (case e {p1.e1 | . . . | pn.en}) ∼=
[~v/~x]e′ : τ .

• Iso6: By symmetry and Iso5.

• Iso7 Let Γ = ~y : ~τ and let ~v be arbitrary where vi : τi and vi val for all vi ∈ ~v. Assume

[~v/~y]

(
val

∀ Γ′,x:τ ′,Γ′′ .σ ∧ σ′
)

.

26

Chapter 6. Soundness Zeus Vijay Ramamurthy

It must be shown that [~v/~y](case e {. . .} ∼= case e′ {. . .}).
By the inductive hypothesis we have

val

∀ Γ.

(
if

(
val

∀ Γ′ .σ

)
then e ∼= e′

)
and therefore (

if [~v/~y]

(
val

∀ Γ′ .σ

)
then [~v/~y](e ∼= e′)

)
Since [~v/~y]σ only contains variables in Γ′, by assumption and conjunction we already

have [~v/~y]

(
val

∀ Γ′ .σ

)
. Therefore we may conclude [~v/~y](e ∼= e′).

Let e ⇓ w. By the inductive hypothesis we have

val

∀ Γ,x:τ ′ .

(
if

(
val

∀ Γ′′ .σ′
)

then case x {. . .} ∼= case x {. . .′}
)

and therefore since x is fresh,

val

∀ x:τ ′ .

(
if [~v/~y]

(
val

∀ Γ′′ .σ′
)

then [~v/~y](case x {. . .} ∼= case x {. . .′})
)

Invoking this with w, we have

if [w/x][~v/~y]

(
val

∀ Γ′′ .σ′
)

then [~v/~y](case w {. . .} ∼= case w {. . .′})

By assumption and conjunction we already have [w/x][~v/~y]

(
val

∀ Γ′′ .σ′
)

. Therefore we

may conclude
[~v/~y](case w {. . .} ∼= case w {. . .′})

As e ∼= w and therefore e′ ∼= w′ by transitivity, by referential transparency we have
Therefore we may conclude

[~v/~y](case e {. . .} ∼= case e′ {. . .′})

• Iso8: Let Γ = ~y : ~τ and let ~v be arbitrary where vi : τi and vi val for all vi ∈ ~v. Assume

[~v/~y]

(
val

∀ x:τ,Γ′ .σ

)
.

It must be shown that [~v/~x](λx1.e1
∼= λx2.e2)

To appeal to EQ1, take arbitrary w such that Γ ` w : τ and w val. By the inductive
hypothesis we have

val

∀ Γ,x:τ .

(
if

(
val

∀ Γ′ .σ

)
then e1

∼= e2 : τ ′
)

27

Chapter 6. Soundness Zeus Vijay Ramamurthy

and therefore since x is fresh,

if [w/x][~v/~y]

(
val

∀ Γ′ .σ

)
then [w/x][~v/~y]e1

∼= e2 : τ ′

By assumption, we already have [w/x][~v/~y]

(
val

∀ Γ′ .σ

)
. Therefore we have

[w/x][~v/~y]e1
∼= e2 : τ ′

By Dyn13, we have

[~v/~y](λx1.e1) w =⇒ [~v/~y][w/x1]e1 = [~v/~y][w/x][x/x1]e1

and
[~v/~y](λx2) w =⇒ [~v/~y][w/x2]e2 = [~v/~y][w/x][x/x2]e2

. Therefore since [w/x][~v/~y]e1
∼= e2 : τ ′ and x is fresh, we have that

[~v/~y](λx1.e1
∼= λx2.e2)

• Iso9: Let Γ = ~x : ~τ and let ~v be arbitrary where vi : τi and vi val for all vi ∈ ~v. Assume

[~v/~x]

(
val

∀ Γ′,Γ′′ .σ ∧ σ′
)

.

It must be shown that [~v/~x](e1 e
′
1
∼= e2 e

′
2).

By the inductive hypothesis we have

val

∀ Γ.

(
if

(
val

∀ Γ′ .σ

)
then e1

∼= e2 : τ → τ ′
)

and therefore

if [~v/~x]

(
val

∀ Γ′ .σ

)
then [~v/~x](e1

∼= e2 : τ → τ ′)

As σ does not contain any variables in Γ′′, by assumption and conjunction we already

have [~v/~x]

(
val

∀
′

Γ.σ

)
therefore we may conclude

[~v/~x](e1
∼= e2 : τ → τ ′)

Similarly, by the inductive hypothesis we have

val

∀ Γ.

(
if

(
val

∀ Γ′′ .σ′
)

then e′1
∼= e′2 : τ

)
and therefore

if [~v/~x]

(
val

∀ Γ′′ .σ′
)

then [~v/~x](e′1
∼= e′2 : τ)

28

Chapter 6. Soundness Zeus Vijay Ramamurthy

As σ′ does not contain any variables in Γ′, by assumption and conjunction we already

have [~v/~x]

(
val

∀
′′

Γ.σ
′
)

therefore we may conclude

[~v/~x](e′1
∼= e′2 : τ)

Since [~v/~x]e1
∼= [~v/~x]e2 : τ → τ ′, by inversion of EQ1 we have

[~v/~x](e1 e
′
1) ∼= [~v/~x](e2 e

′
1) : τ ′

Since [~v/~x](e′1
∼= e′2 : τ), by referential transparency we then have

[~v/~x](e1 e
′
1) ∼= [~v/~x](e2 e

′
2) : τ ′

• Iso10: As fixed points may be expressed solely in terms of lambdas (as demonstrated
by the Y combinator), this is a special case of Iso8.

29

Chapter 7

Implementation

We’ve implemented Zeus as a grading assistant to group Standard ML programs into equi-
valence classes. The implementation is written in Standard ML. Student submissions often
contain declarations of many different expressions, as they are often asked to implement
their solutions to many different homework problems in the same code file. Rather than
checking equivalence of entire files, it is more effective to check equivalence of student files
on a per-problem basis. In practice, each homework problem consists of a function which
students are asked to implement. A particular problem can then be identified by the name of
the function it asks for implementation. The grading assistant is therefore invoked with two
arguments: a path to a directory in which all of the student submissions are contained, and
the name of the function we wish to detect equivalence of. Each invocation of the algorithm
produces output which helps grade a particular problem, so to grade an entire assignment
the algorithm is invoked once per problem on the assignment.

The implementation is written to group Standard ML programs into equivalence classes.
It does this by transpiling each code submission from Standard ML into LambdaPix, and
then running the Zeus algorithm pairwise.

7.1 Results

We present the results of using Zeus to group submissions to a homework assignment in an
introductory functional programming course taught in Standard ML.

Figure 7.1 shows the degree to which Zeus reduces grading. Starting with 186 student
submissions, running Zeus on various problems resulted in around 52.8 equivalence classes on
average, which corresponds to roughly a 72% reduction on average in the amount of grading
work there is to be done.

Figure 7.2 shows the sizes of the six largest equivalence classes for each of the problems.
On average around 105 submissions get put into the largest equivalence class, which is roughly
56% of them. After that, the class sizes taper off in a pattern resembling exponential decay.

30

Chapter 7. Implementation Zeus Vijay Ramamurthy

Function Equivalence Classes Reduction in Grading Time
heads 22 88%
tails 54 71%

lookAndSay 92 51%
prefixSum 34 82%

prefixSumFast 62 67%

Figure 7.1: Number of equivalence classes identified by Zeus (originally 186 items)

Function Class 1 Class 2 Class 3 Class 4 Class 5 Class 6
heads 150 9 4 3 2 1
tails 112 9 8 3 2 2

lookAndSay 48 22 6 6 4 4
prefixSum 134 6 6 4 3 2

prefixSumFast 82 13 9 8 6 6

Figure 7.2: Sizes of largest equivalence classes (originally 186 items)

31

References

[1] Umut A. Acar, Amal Ahmed, and Matthias Blume. “Imperative Self-Adjusting Com-
putation”. In: POPL (2008).

[2] Karl Crary. “Logical Relations and a Case Study in Equivalence Checking”. In: Ad-
vanced Topics in Types and Programming Languages. Ed. by Benjamin C. Pierce. The
MIT Press, 2005. Chap. 6, pp. 223–244.

[3] Benny Godlin and Ofer Strichman. “Inference Rules for Proving the Equivalence of
Recursive Functions”. In: Acta Informatica (2010).

[4] Sumit Gulwani, Ivan Radicek, and Florian Zuleger. “Automated Clustering and Pro-
gram Repair for Introductory Programming Assignments”. In: PLDI (2018).

[5] Robert Harper. Practical Foundations for Programming Languages. Cambridge Uni-
versity Press, 2016.

[6] David Hopkins, Andrzej S. Murawski, and C.-H. Luke Ong. “Hector: An Equivalence
Checker for a Higher-Order Fragment of ML”. In: International Conference on Com-
puter Aided Verification (2012).

[7] Nuno P. Lopes and Jose Monteiro. “Automatic equivalence checking of programs with
uninterpreted functions and integer arithmetic”. In: International Journal on Software
Tools for Technology Transfer (2016).

[8] Georce C. Necula. “Translation Validation for an Optimizing Compiler”. In: ACM
SIGPLAN Notices (2000).

[9] Christopher A. Stone and Robert Harper. “Extensional Equivalence and Singleton
Types”. In: ACM Transactions on Computational Logic (2006).

[10] Sorin Lerner Sudipta Kundu Zachary Tatlock. “Proving Optimizations Correct using
Paramterized Program Equivalence”. In: PLDI (2009).

32

	Introduction
	Related Work
	LambdaPix
	Syntax
	Static Semantics
	Dynamic Semantics

	The Algorithm
	Propositional Logic Formulas
	Formula Generation

	Operation
	Soundness
	Extensional Equivalence
	Proof

	Implementation
	Results

